Objective
Outpatient no-shows have important implications for costs and the quality of care. Predictive models of no-shows could be used to target intervention delivery to reduce no-shows. We reviewed the effectiveness of predictive model-based interventions on outpatient no-shows, intervention costs, acceptability, and equity.
Materials and Methods
Rapid systematic review of randomized controlled trials (RCTs) and non-RCTs. We searched Medline, Cochrane CENTRAL, Embase, IEEE Xplore, and Clinical Trial Registries on March 30, 2022 (updated on July 8, 2022). Two reviewers extracted outcome data and assessed the risk of bias using ROB 2, ROBINS-I, and confidence in the evidence using GRADE. We calculated risk ratios (RRs) for the relationship between the intervention and no-show rates (primary outcome), compared with usual appointment scheduling. Meta-analysis was not possible due to heterogeneity.
Results
We included 7 RCTs and 1 non-RCT, in dermatology (n = 2), outpatient primary care (n = 2), endoscopy, oncology, mental health, pneumology, and an magnetic resonance imaging clinic. There was high certainty evidence that predictive model-based text message reminders reduced no-shows (1 RCT, median RR 0.91, interquartile range [IQR] 0.90, 0.92). There was moderate certainty evidence that predictive model-based phone call reminders (3 RCTs, median RR 0.61, IQR 0.49, 0.68) and patient navigators reduced no-shows (1 RCT, RR 0.55, 95% confidence interval 0.46, 0.67). The effect of predictive model-based overbooking was uncertain. Limited information was reported on cost-effectiveness, acceptability, and equity.
Discussion and Conclusions
Predictive modeling plus text message reminders, phone call reminders, and patient navigator calls are probably effective at reducing no-shows. Further research is needed on the comparative effectiveness of predictive model-based interventions addressed to patients at high risk of no-shows versus nontargeted interventions addressed to all patients.