Южно-Уральский государственный университет, г. ЧелябинскВыполнен обзор исследований струйного насоса. Показано, что его расчет основывается, как правило, на квазиодномерных моделях, базирующихся на уравнениях баланса расходов, энергии, количества движения. Одномерные теории устанавливают взаимосвязь параметров потоков на входе и выходе аппарата и его составных частей. Определение распределения параметров вдоль эжектора не представляется возможным. Это затрудняет, с одной стороны, более полное понимание рабочего процесса, а с другой -оптимальное профилирование проточной части аппарата. Метод CFD позволяет детально проанализировать рабочий процесс насоса. Об этом свидетельствуют публикации, посвящённые исследованию влияния формы проточной части на энергетические и кавитационные характеристики насоса.Целью настоящей работы являлось получение численной модели течения жидкости в проточной части струйного насоса, определение полей скорости и давления в области вовлечения пассивной среды в спутное со струей движение.Представлены материалы лабораторных испытаний струйного насоса и численная модель течения жидкости. Модель основывалась на уравнениях: неразрывности; Навье-Стокса; переноса кинетической энергии турбулентности k и относительной скорости диссипации ε этой энергии. Численная модель решалась в программном комплексе ANSYS Fluent. Лабораторные испытания струйного насоса проводились на стенде в лаборатории кафедры «Гидравлика и гидропневмосистемы» ЮУрГУ. Струйный насос выполнен с коническим соплом, открытой приемной камерой, цилиндрическодиффузорной смесительной камерой, диффузором. В опытах измерялись объемные расходы активного и общего потоков жидкости; статические давления перед соплом, на входе в смесительную камеру и выходе из насоса; температура жидкости.Сопоставлены результаты лабораторного и численного исследований. Доказана правомерность предложенной численной модели течения жидкости в проточной части струйного насоса. Рассчитаны поля скорости и давления в приемной и смесительной камерах насоса при нескольких противодавлениях. Доказано, что последнее влияет не только на распределение скорости и давления в смесительной камере, но и в приемной на участке от среза сопла до входного сечения камеры смешения. При этом наибольшая неравномерность распределения давления наблюдается в плоскости среза сопла, а скорости -во входном сечении смесительной камеры. Струйное течение активного потока в приемной камере является неизобарическим. Наибольший локальный провал давления наблюдается у кромок сопла, что при равенстве минимального давления значению давления насыщенных паров приводит к генерации пара и кавитационным явлениям в струйном насосе.Ключевые слова: струйный насос, математическая модель, турбулентность, численное трехмерное моделирование, лабораторные испытания, верификация, поля скорости и давления, кавитация.Струйные насосы (эжектора) применяются в различных областях техники более двухсот лет в качестве насоса-смесителя; насоса для транспорта газов, жидкостей, твердых сыпучих материалов, либо их смесей; ваку...