Mild traumatic brain injury associated with blast exposure is an important issue, and cavitation of the cerebrospinal fluid (CSF) has been suggested as a potential injury mechanism; however, physical measurements are required to evaluate cavitation thresholds. Modifications to a Split Hopkinson Pressure Bar (SHPB) apparatus were investigated with the aim to generate localized fluid cavitation and measure the cavitation threshold of fluids. The proposed design incorporated a novel closed cavitation chamber to generate localized cavitation resulting from a reflected compression pulse, which was generated by a spherical steel striker and Polymethyl methacrylate (PMMA) incident bar. A numerical model of the incident bar was developed and validated with 24 independent tests (cross-correlation: 0.970-0.997), and this was extended to a numerical model of the apparatus including the chamber, validated with 27 independent tests (cross-correlation: 0.921) to predict the tensile fluid pressure in the chamber. Tests on distilled water were performed with comparable numerical results for the chamber strain (R 2 : 0.875) and chamber end-wall velocity (R 2 : 0.992). The pressure in the chamber was determined from the model to avoid introducing a nucleation site via a pressure gauge, and was verified with a firstorder approximation showing good agreement (R 2 : 0.892). The 50% probability of cavitation for distilled water was −3.32 MPa ±3%, comparable to values in the literature. This novel apparatus, including a closed confinement chamber integrated with a polymeric SHPB apparatus was able to create localized fluid cavitation with loading comparable to blast exposure. Future studies will include the measurement of CSF cavitation pressure.