2012
DOI: 10.2172/1055620
|View full text |Cite
|
Sign up to set email alerts
|

Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers.

Abstract: The beat frequencies, temporal intensity profile, and modulation depth of a flash lamp pumped passively Q-switched, Nd:Cr:GSGG monoblock laser with a Cr +4 :YAG Qswitch are investigated as a function of cavity length. The measured temporal widths are linearly correlated with cavity length and the modulation depths of the temporal waveforms are periodic in nature with cavity length, peaking at integer multiples of c/2nL. Simulations support measured trends in the pulse widths and beat frequencies as a function … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…A candidate original waveform was calculated with the harmonic mode-beating frequency of 800 MHz and modulation depth of 0.5, which is compared with the experimental laser pulse in figure 3(b). An approximate harmonic mode beating frequency is εc/2L C , where c is the speed of light, L C is the cavity length and ε = n/m (n, m: integers) [41,42]. The free spectral range, or fundamental cavity mode, c/2L is about 250 MHz, for the present cavity length in the oscillator section L C = 62 cm, while the experimental mode-beating frequency varies in the range of 500-800 MHz, corresponding to ε = 2-3 for the strongest beat.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…A candidate original waveform was calculated with the harmonic mode-beating frequency of 800 MHz and modulation depth of 0.5, which is compared with the experimental laser pulse in figure 3(b). An approximate harmonic mode beating frequency is εc/2L C , where c is the speed of light, L C is the cavity length and ε = n/m (n, m: integers) [41,42]. The free spectral range, or fundamental cavity mode, c/2L is about 250 MHz, for the present cavity length in the oscillator section L C = 62 cm, while the experimental mode-beating frequency varies in the range of 500-800 MHz, corresponding to ε = 2-3 for the strongest beat.…”
Section: Resultsmentioning
confidence: 99%
“…Diminishing periods at |z| 1 mm in all the cases result from the reduced breakdown wave speed at the end of the energy coupling. In [42], up to the tenth harmonic of the fundamental cavity mode was observed in the power spectral density of a mode-beating pulse, although there was an external cavity in addition to the master cavity, which contributed to the generation of higher harmonics. If the present single-cavity oscillator output contains up to the eigth harmonic, or f MB = 2.0 GHz, superposed on the lower harmonics, the measured period could be attributed to the frequency component around 2 GHz.…”
Section: Source Of Distributed Elastic Scattering Spotsmentioning
confidence: 99%