Angiogenesis in liver cirrhosis leads to splanchnic hyperemia, increased portal inflow, and portosystemic collaterals formation, which may induce lethal complications, such as gastroesophageal variceal hemorrhage and hepatic encephalopathy. Cannabinoids (CBs) inhibit angiogenesis, but the relevant influences in cirrhosis are unknown. In this study, Spraque-Dawley rats received common bile duct ligation (BDL) to induce cirrhosis. BDL rats received vehicle, arachidonyl-2-chloroethylamide (cannabinoid receptor type 1 [CB 1 ] agonist), JWH-015 (cannabinoid receptor type 2 [CB 2 ] agonist), and AM630 (CB 2 antagonist) from days 35 to 42 days after BDL. On the 43rd day, hemodynamics, presence of CB receptors, severity of portosystemic shunting, mesenteric vascular density, vascular endothelial growth factor (VEGF), VEGFR-1, VEGFR-2, phospho-VEGFR-2, cyclooxygenase (COX)-1, COX-2, and endothelial nitric oxide synthase (eNOS) expressions as well as plasma VEGF levels were evaluated. Results showed that CB 1 and CB 2 receptors were present in left adrenal veins of sham rats, splenorenal shunts (the most prominent intraabdominal shunts) of BDL rats, and mesentery of sham and BDL rats. CB 2 receptor was up-regulated in splenorenal shunts of BDL rats. Both acute and chronic JWH-015 treatment reduced portal pressure and superior mesenteric arterial blood flow. Compared with vehicle, JWH-015 significantly alleviated portosystemic shunting and mesenteric vascular density in BDL rats, but not in sham rats. The concomitant use of JWH-015 and AM630 abolished JWH-015 effects. JWH-133, another CB 2 agonist, mimicked the JWH-015 effects. JWH-015 decreased mesenteric COX-1, COX-2 messenger RNA expressions, and COX-1, COX-2, eNOS protein expressions. Furthermore, JWH-015 decreased intrahepatic angiogenesis and fibrosis. Conclusions: CB 2 agonist alleviates portal hypertension (PH), severity of portosystemic collaterals and mesenteric angiogenesis, intrahepatic angiogenesis, and fibrosis in cirrhotic rats. The mechanism is, at least partly, through COX and NOS down-regulation. CBs may be targeted in the control of PH and portosystemic collaterals. (HEPATOLOGY 2012;56:248-258) A ngiogenesis, the generation of new blood vessels from the preexisting vessels, is involved in the development of increased portal inflow and pressure as well as of portosystemic collaterals in portal hypertension (PH).1 The portosystemic collateral vascular bed is primarily triggered with an attempt to divert the stagnant portal blood flow to systemic circulation. Complications include hepatic encephalopathy caused by the noxious material draining into systemic circulation, and bleeding from the most prominent