2015
DOI: 10.1142/s0218194015500254
|View full text |Cite
|
Sign up to set email alerts
|

CBIR Based Testing Oracles: An Experimental Evaluation of Similarity Functions

Abstract: Content-Based Image Retrieval (CBIR) systems constitute an innovative approach to store, to compare and to query images in a database. Visual aspects such as color, texture or shape are used to perform such operations. Recently, CBIR concepts were applied to build testing oracles for image processing programs, where test verdicts (approval/disapproval) are based on similarity measures between images produced by the program and reference images. However, the results of a CBIR system may vary depending on the co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
5

Year Published

2017
2017
2020
2020

Publication Types

Select...
2
1

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(7 citation statements)
references
References 19 publications
0
2
0
5
Order By: Relevance
“…Differences were observed for these results, which were expected, since functions with behaviors different from each other were selected, according to a previous work on similarity functions [31].…”
Section: Comparison Between the Similarity Functions Usedmentioning
confidence: 95%
See 1 more Smart Citation
“…Differences were observed for these results, which were expected, since functions with behaviors different from each other were selected, according to a previous work on similarity functions [31].…”
Section: Comparison Between the Similarity Functions Usedmentioning
confidence: 95%
“…Each experiment was repeated three times, using a different similarity function in each execution. The results of a previously conducted study [31] determined three major similarity function groups with similar behaviors. For this study, one function from each of these groups was selected.…”
Section: Case Studymentioning
confidence: 99%
“…• frequência mais forte calculada por meio do centróide espectral. Nunes et al (2015), por exemplo, apresentaram um estudo comparativo de funções de similaridade com aplicações em CBIR. Eles contribuem com uma discussão com relação aos impactos da seleção de diferentes funções de similaridade para a tarefa de comparação entre vetores de características.…”
Section: Características Sonorasunclassified
“…Neste estudo utilizamos extratores de características de imagens para extrair informações sobre a figura representada em cada segmento de vídeo. Área, perímetro, largura e altura (ambos em pixels) [15] foram obtidos por meio da análise de um quadro selecionado do segmento de vídeo. Um único quadro para essa análise justificou-se, pois a figura representada é sempre a mesma ao longo da reprodução.…”
Section: B Características De Região Cor E Movimentounclassified
See 1 more Smart Citation