2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2014
DOI: 10.1109/icassp.2014.6854298
|View full text |Cite
|
Sign up to set email alerts
|

CCA based feature selection with application to continuous depression recognition from acoustic speech features

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
52
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(53 citation statements)
references
References 14 publications
0
52
0
1
Order By: Relevance
“…Then the effectiveness of the use of the canonical correlation for the fea- Fig. 1 Projection results of video features and viewing behavior features based on our method (mRMR-SCMMCCA algorithm), mRMR-CCA algorithm [4] and SLPCCA-OC algorithm [5]. The horizontal and vertical axes correspond to the projection results of video features and viewing behavior features, respectively.…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…Then the effectiveness of the use of the canonical correlation for the fea- Fig. 1 Projection results of video features and viewing behavior features based on our method (mRMR-SCMMCCA algorithm), mRMR-CCA algorithm [4] and SLPCCA-OC algorithm [5]. The horizontal and vertical axes correspond to the projection results of video features and viewing behavior features, respectively.…”
Section: Resultsmentioning
confidence: 99%
“…(3), we derive a new feature selection algorithm, i.e., the mRMR-SCMMCCA algorithm. Specifically, we perform the optimal feature selection one-by-one in the same manner as the previously reported feature selection algorithms [3], [4]. Specifically, the selection of kth optimal video feature is performed as…”
Section: Derivation Of Mrmr-scmmcca Algorithmmentioning
confidence: 99%
See 1 more Smart Citation
“…Данный конкурс соревнования был выигран коллективом турецкого Босфорского универ-ситета, г. Стамбул. В разработанной ими системе для оценки степени физической нагрузки (контролиро-валась посредством частоты сердцебиения), накладываемой на диктора, использовались многопоточные признаки аудиосигнала (multi-view discriminative projection), вычисляемые из LLD-наборов признаков [47,49]. Разработанная система позволила превзойти базовую систему распознавания, показав наилучшее среднее значение полноты 75,4% (Unweighted Average Recall, UAR=75,4%).…”
Section: архитектура базовой системы паралингвистического анализа речиunclassified
“…This includes feature selection in Support Vector Machine (SVM) classifier [13] for emotion recognition, ensemble feature selection in [14] for model adaptation, and recent openSMILE [3]. Canonical correlation analysis (CCA) is employed in [15] for selecting apt features from a set of speech features for depression recognition. Acoustic, linguistic and psycholinguistic features are employed in [16] for learning the personality traits from the spoken data.…”
Section: Introductionmentioning
confidence: 99%