Bacterial lifestyle is influenced by environmental signals, and many differentiation processes in bacteria are governed by the threshold concentrations of molecules present in their niche. Biofilm is one such example where bacteria in their sessile state adapt to a lifestyle that causes several adaptive alterations in the population. Here, a brief overview is given on a variety of environmental signals that bias biofilm development in Gram-positive bacteria, including nutrient conditions, self- and heterologously produced substances, like quorum sensing and host produced molecules. The Gram-positive model organism, Bacillus subtilis is a superb example to illustrate how distinct signals activate sensor proteins that integrate the environmental signals towards global regulators related to biofilm formation. The role of reduced oxygen level, polyketides, antimicrobials, plant secreted carbohydrates, plant cell derived polymers, glycerol, and osmotic conditions are discussed during the transcriptional activation of biofilm related genes in B. subtilis.