Prostate cancer is the most frequently diagnosed male malignancy. The normal prostate development and prostate cancer progression are mediated by androgen receptor (AR). Recently, the roles of cyclin-dependent kinase 5 (Cdk5) and its activator, p35, in cancer biology are explored one after another. We have previously demonstrated that Cdk5 may regulate proliferation of thyroid cancer cells. In addition, we also identify that Cdk5 overactivation can be triggered by drug treatments and leads to apoptosis of prostate cancer cells. The aim of this study is to investigate how Cdk5 regulates AR activation and growth of prostate cancer cells. At first, the data show that Cdk5 enables phosphorylation of AR at Ser-81 site through direct biochemical interaction and, therefore, results in the stabilization of AR proteins. The Cdk5-dependent AR stabilization causes accumulation of AR proteins and subsequent activation. Besides, the positive regulations of Cdk5-AR on cell growth are also determined in vitro and in vivo. S81A mutant of AR diminishes its interaction with Cdk5, reduces its nuclear localization, fails to stabilize its protein level, and therefore, decreases prostate cancer cell proliferation. Prostate carcinoma specimens collected from 177 AR-positive patients indicate the significant correlations between the protein levels of AR and Cdk5 or p35. These findings demonstrate that Cdk5 is an important modulator of AR and contributes to prostate cancer growth. Therefore, Cdk5-p35 may be suggested as diagnostic and therapeutic targets for prostate cancer in the near future.Prostate cancer is a commonly diagnosed malignancy in men, and androgen plays an important role in its early development (1). Androgen deprivation has been considered as a common therapy for androgen-dependent prostate cancer. However, the existing cancer cells eventually become hormone-refractory, and the following therapy usually gets into scrapes. The androgen receptor (AR), 2 which belongs to the steroid receptor family and plays pivotal roles in the development of the prostate gland and the pathogenic progression of prostate cancer. High levels of AR expression along with its target genes have been reported in hormone-refractory prostate cancer cells, suggesting that AR signaling is activated regardless of the levels of serum androgen (2). A study analyzing consensus sequences of phosphorylation indicates that AR contains more than 40 predicted phosphorylation sites (3). Ser-81 of the AR N terminus is the most intensely phosphorylated site in response to androgen binding (4). The latest report reveals the relevance of Ser-81 phosphorylation and AR promoter selectivity as well as cell growth (5). Our recent work also shows the increase of Ser-81 phosphorylation of AR in the androgen-independent LNCaP sub-line (6). Fu et al. (7) proposed that the phosphorylation consensus sequence (SPRT) of cyclin-dependent kinase 5 (Cdk5) corresponds with the sequence around AR Ser-81. Although AR was reported as substrates for Cdk9 (5) as well as Cdk1 (8), whi...