The coexistence of ceftazidime, which is a popular third-generation of cephalosporin antibiotic, with ubiquitous paracetamol or acetaminophen, is very likely because the latter is given to the patients to reduce fever due to bacterial infection along with an antibiotic such as the former. Therefore, in this study, we investigated the detailed binding of ceftazidime with plasma protein, human serum albumin (HSA), in the absence and presence of paracetamol using spectroscopic techniques such as fluorescence, UV-visible, and circular dichroism, along with in silico methods such as molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis. The basic idea of the interaction was attained by using UV-visible spectroscopy. Further, fluorescence spectroscopy revealed that there was a fair interaction between ceftazidime and HSA, and the mechanism of the quenching was a dynamic one, i.e., the quenching constant increased with increasing temperature. The interaction was, primarily, reinforced by hydrophobic forces, which resulted in the partial unfolding of the protein. Low concentrations of paracetamol were ineffective in affecting the binding of ceftazidime with has; although, a decrease in the quenching and binding constants was observed in the presence of high concentrations of the former. Competitive binding site experiments using warfarin and ibuprofen as site markers revealed that ceftazidime neither binds at drug site 1 or at drug site 2, articulating another binding site, which was confirmed by molecular docking simulations.