The pathomechanism of Alzheimer's disease (AD) certainly involves mitochondrial disturbances, glutamate excitotoxicity, and neuroinflammation. The three main aspects of mitochondrial dysfunction in AD, i.e., the defects in dynamics, altered bioenergetics, and the deficient transport act synergistically. In addition, glutamatergic neurotransmission is affected in several ways. The balance between synaptic and extrasynaptic glutamatergic transmission is shifted toward the extrasynaptic site contributing to glutamate excitotoxicity, a phenomenon augmented by increased glutamate release and decreased glutamate uptake. quinolinic acid, has been demonstrated to be neurotoxic, promoting glutamate excitotoxicity, reactive oxygen species production, lipid peroxidation, and microglial neuroinflammation, and its abundant presence in AD pathologies has been demonstrated. Finally, the neuroprotective metabolite, kynurenic acid, has been associated with antagonistic effects at glutamate receptors, free radical scavenging, and immunomodulation, giving rise to potential therapeutic implications. This review presents the multiple connections of KYN pathwayrelated alterations to three main domains of AD pathomechanism, such as mitochondrial dysfunction, excitotoxicity, and neuroinflammation, implicating possible therapeutic options.3