Background: Lung cancer is a common malignant tumor, with, non-small cell lung cancer (NSCLC) accounting for about 80-85% of cases. This study investigated the expression of miR-137 in NSCLC tissues and cells and its effects on the migration and invasion of NSCLC cells and related mechanisms.
Methods:We collected the neoplastic and paracancerous tissues of NSCLC patients, detected the expression of miR-137 in NSCLC tissues and cell lines by real-time quantitative polymerase chain reaction (RT-qPCR), and analyzed the correlation between miR-137 expression and the clinicopathological features and survival of NSCLC. Following transfection with miR-137 mimic or inhibitor in NSCLC cell lines (A549 or H1299) to upregulate or downregulate the expression of miR-137, transwell assay was employed to detect the effects of miR-137 on migration or invasion. Online software was employed to predict and analyze the target gene of miR-137, and luciferase reporter gene system was adopted to validate it. The effects of miR-137 on the expressions of COX-2 and Epithelial-Mesenchymal Transition (EMT) related proteins were investigated by Western blot.Results: Compared to paracancerous tissues and BEAS-2B cells, the expressions of miR-137 in NSCLC tissues, A549 and H1299 cells were dramatically down-regulated (P<0.01). After transfection with miR-137 mimic or inhibitor in A549 and H1299 cells, the miR-137 expressions were markedly up-regulated or downregulated (P<0.01), respectively. The number of migrating or invading cells was observably decreased or increased (P<0.01) after transfected with mimic or inhibitor, respectively, while relative luciferase activity was evidently decreased in cells co-transfected with miR-137 mimic and wild type recombined vector of 3'UTR of COX-2. While the expressions of COX-2 and E-cadherin were both substantially reduced in A549 cells treated with miR-137 mimic, that of vimentin was substantially raised. The expression of miR-137 correlated with smoking history, lymph node metastasis, and TNM clinical stage, and patients with high miR-137 expression had apparent longer survival.
Conclusions:The expression of miR-137 was significantly down-regulated in NSCLC tissues and cells, and correlated with NSCLC progress. miR-137 suppressed the migration and invasion of NSCLC cells through regulating EMT relative proteins by targeting COX-2. miR-137 is expected to become a novel biomarker and therapeutic target of NSCLC.