Background/Aims: Proliferative vitreoretinopathy (PVR) is a severe blinding complication of rhegmatogenous retinal detachment. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is thought to play a pivotal role in the pathogenesis of PVR. Fucoidan, a marine extract, reportedly has many benefits effects in a variety of tissues and organs such as anti-inflammation, anti-oxidative stress, and anti-carcinogenesis. In this study, we investigated the potential role of fucoidan on EMT in RPE cells and its effect on the development of PVR. Methods: MTS, Transwell, and collagen gel contraction assays were employed to measure the viability, migration, and contraction of RPE cells, respectively. mRNA and protein expression were evaluated via real-time quantitative PCR and western blot analysis, respectively. In vivo, a pigmented rabbit model of PVR was established to examine the anti-PVR effect of fucoidan. Results: Fucoidan reversed the transforming growth factor (TGF)-β1-induced EMT of RPE cells, including the increased expression of α-smooth muscle actin (α-SMA) and fibronectin and down-regulation of E-cadherin in human primary RPE cells. Moreover, the upregulation of phosphorylated Smad2/3 induced by TGF-β1 was suppressed by fucoidan. Fucoidan also inhibited the migration and contraction of RPE cells induced by TGF-β1. In vivo, fucoidan inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that fucoidan suppressed the formation of α-SMA-positive epiretinal membranes. Conclusion: Our findings regarding the protective effects of fucoidan on the EMT of RPE cells and experimental PVR suggest the potential clinical application of fucoidan as an anti-PVR agent.