Background
Burkholderia cepacia lipase is an important industrial biocatalyst for biodiesel production and chiral pharmaceutical synthesis. Heterologous soluble expression of lipase lipA gene from B. cepacia in Escherichia coli highly depends on co-expression of its cognate foldase gene, lipB. However, the interaction between recombinant lipase LipA and chaperonin LipB is rather complicated and confusing. In this research, various systems of lipA/lipB co-expression combinations are investigated to obtain high-level soluble expression of lipA, respectively.
Results
The best co-expression combination system for lipA and lipB is E. coli Origami 2 (DE3)/pETDuet-lipB(MCS1)/lipA(MCS2). The soluble expression level of lipA is 100.4 U/OD600 towards 4-nitrophenyl laurate hydrolysis. The recombinant LipA can be rapidly isolated from cell-free supernatant of recombinant E. coli lysate using HisTrap HP affinity chromatography column, and the lipA/LipB complex is obtained. Enzymatic characterization analysis shows that the purified LipA is a mesothermal and alkaline enzyme. LipA displays preference for medium-chain-length acyl groups (C10-C12) and sn-1,3 regioselectivity. Besides triacylglycerol hydrolase activity (EC. 3.1.1.3), LipA also displays steryl ester hydrolase activity (EC. 3.1.1.13). The specific activity of LipA towards 4-nitrophenyl decanoate and cholesterol linoleate are 638.9 U/mg and 1111.5 mU/mg, respectively.
Conclusions
Host strain E. coli Origami 2 (DE3), lipB locus at MCS1 on the dual expression cassette plasmid pETDuet, and low-temperature induction contribute to the soluble expression of lipA. Recombinant LipA displays both triacylglycerol hydrolase activity and steryl ester hydrolase activity.