RNA interference (RNAi) has been used for selective degradation of an mRNA transcript or inhibiting its translation to a functional protein in various species. Here, we applied the RNAi approach to suppress the expression of the maternal transcript C-mos and embryonic transcripts Oct-4 in bovine oocytes and embryos respectively, using microinjection of sequence-specific double-stranded RNA (dsRNA). For this, 435 bp C-mos and 341 bp Oct-4 dsRNA were synthesized and microinjected into the cytoplasm of immature oocytes and zygotes respectively. In experiment 1, immature oocytes were categorized into three groups: those injected with C-mos dsRNA, RNase-free water and uninjected controls. In experiment 2, in vitro produced zygotes were categorized into three groups: those injected with Oct-4 dsRNA, RNase-free water and uninjected controls. The developmental phenotypes, the level of mRNA and protein expression were investigated after treatment in both experiments. Microinjection of C-mos dsRNA has resulted in 70% reduction of C-mos transcript after maturation compared to the water-injected and uninjected controls (P!0.01). Microinjection of zygotes with Oct-4 dsRNA has resulted in 72% reduction in transcript abundance at the blastocyst stage compared to the uninjected control zygotes (P!0.01). Moreover, a significant reduction in the number of inner cell mass (ICM) cells was observed in Oct-4 dsRNA-injected embryos compared to the other groups. From oocytes injected with C-mos dsRNA, 60% showed the extrusion of the first polar body compared to 50% in water-injected and 44% in uninjected controls. Moreover, only oocytes injected with C-mos dsRNA showed spontaneous activation. In conclusion, our results demonstrated that sequence-specific dsRNA can be used to knockdown maternal or embryonic transcripts in bovine embryogenesis.