The increased understanding of the competitive endogenous RNA (ceRNA) network in the onset and development of breast cancers has suggested their use as promising disease biomarkers. Keeping these RNAs as molecular targets, we designed and developed an optical nanobiosensor for specific detection of the miRNAs-LncRNAs-mRNAs triad grid in circulation. The sensor was formulated using three quantum dots (QDs), i.e., QD-705, QD-525, and GQDs. These QDs were surface-activated and modified with a target-specific probe. The results suggested the significant ability of the developed nanobiosensor to identify target RNAs in both isolated and plasma samples. Apart from the higher specificity and applicability, the assessment of the detection limit showed that the sensor could detect the target up to 1 fg concentration. After appropriate validation, the developed nanobiosensor might prove beneficial to characterizing and detecting aberrant disease-specific cell-free circulating miRNAs-lncRNAs-mRNAs.