ABSTRACTThe opportunistic pathogenPseudomonas aeruginosatargets wounded epithelial barriers, but the cellular alteration that increases susceptibility toP. aeruginosainfection remains unclear. This study examined how cell migration contributes to the establishment ofP. aeruginosainfections using (i) highly migratory T24 epithelial cells as a cell culture model, (ii) mutations in the type III secretion (T3S) effector ExoS to manipulateP. aeruginosainfection, and (iii) high-resolution immunofluorescent microscopy to monitor ExoS translocation. ExoS includes both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities, andP. aeruginosacells expressing wild-type ExoS preferentially bound to the leading edge of T24 cells, where ExoS altered leading-edge architecture and actin anchoring in conjunction with interrupting T3S translocation. Inactivation of ExoS GAP activity allowedP. aeruginosato be internalized and secrete ExoS within T24 cells, but as with wild-type ExoS, translocation was limited in association with disruption of actin anchoring. Inactivation of ExoS ADPRT activity resulted in significantly enhanced T3S translocation byP. aeruginosacells that remained extracellular and in conjunction with maintenance of actin-plasma membrane association. Infection withP. aeruginosaexpressing ExoS lacking both GAP and ADPRT activities resulted in the highest level of T3S translocation, and this occurred in conjunction with the entry and alignment ofP. aeruginosaand ExoS along actin filaments. Collectively, in using ExoS mutants to modulate and visualize T3S translocation, we were able to (i) confirm effector secretion by internalizedP. aeruginosa, (ii) differentiate the mechanisms underlying the effects of ExoS GAP and ADPRT activities onP. aeruginosainternalization and T3S translocation, (iii) confirm that ExoS ADPRT activity targeted a cellular substrate that interrupted T3S translocation, (iv) visualize the ability ofP. aeruginosaand ExoS to align with actin filaments, and (v) demonstrate an association between actin anchoring at the leading edge of T24 cells and the establishment ofP. aeruginosainfection. Our studies also highlight the contribution of ExoS to the opportunistic nature ofP. aeruginosainfection through its ability to exert cytotoxic effects that interrupt T3S translocation andP. aeruginosainternalization, which in turn limit theP. aeruginosainfectious process.