Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening.Migrating cells play a pivotal role in morphogenesis 1 , immune responses 2 , and cancer metastasis 3 . Their style of motion, often assigned as crawling, is powered by complex cytoskeletal rearrangements that deform and propel the cell. On solid surfaces, eukaryotic cells extend protrusions, which attach to the substrate and are then actively retracted, thus dragging the cell forward. The formation of the leading protrusion of a migrating cell, the lamellipodium, is driven by actin polymerization, while adhesion and contraction are predominantly regulated by integrin-based focal adhesions and the actomyosin apparatus 4,5 . Coupling of focal adhesion complexes to the cytoskeletal network in turn reinforces actin assembly and hence lamellipodia extension 6 . The complex interplay between actomyosin contractility and focal adhesions, which are capable of sensing and transducing chemical and mechanical cues in the extracellular environment, renders the cell sensitive to external stimuli such as the composition and rigidity of the extracellular matrix (ECM) and the underlying substrate 7,8 .In recent studies, various theoretical models for cell migration have been proposed and implemented. These implementations range from molecular level approaches, which describe cell migration in terms of internal reaction diffusion dynamics 9-11 to coarse grained approaches in which individual cells are resembled by sets of pixels 12-14 or interacting, self-propelled geometrical objects [15][16][17] . Many of these models are able to reproduce the basic ...