Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4ðIETDVÞ 2 (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol∕g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-Ndimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.drug discovery | ischemic stroke | protein-protein interactions P rotein-protein interactions mediated by postsynaptic density protein-95 (PSD-95)/Discs-large/ZO-1 (PDZ) domains are important for intracellular signaling events, and several PDZ domains are potential drug targets for neuronal diseases and cancer (1, 2). The postsynaptic scaffolding protein PSD-95 simultaneously binds the N-methyl-D-aspartate (NMDA)-type of ionotropic glutamate receptors and the enzyme neuronal nitric oxide synthase (nNOS) through its PDZ1 and PDZ2 domains (3). Activation of the NMDA receptor causes influx of Ca 2þ , which activates nNOS thereby leading to nitric oxide generation (4), a key facilitator of glutamate-mediated excitotoxicity (5, 6). Ligands that bind to the first two PDZ domains of PSD-95 inhibit the formation of the ternary nNOS/PSD-95/NMDA receptor complex and uncouple the harmful production of nitric oxide from NMDA receptor activity (Fig. 1A). As PSD-95 inhibition does not affect ion-flux (7) or prosurvival signaling pathways (8) mediated by the NMDA receptor, it is believed that compounds targeting PDZ1 and PDZ2 of PSD-95 can provide an efficient and safe treatment of ischemic brain damage (9), where excitotoxicity is known to dominate in the acute poststroke period, as well as other NMDA receptor-related disorders such as chronic pain and Alzheimer's disease (10-14).The shallow and elongated binding pocket of PDZ domains generally favor binding of peptides or peptide analogues and so far no drug-like small-molecule inhibitors of PDZ domains with affinities below 5 μM have been identified (15). Accordingly, the most advanced PSD-95 inhibitor is a 20-mer peptide, Tat-NR2B9c (7, 8, 16), composed of nine amino acids corresponding to the C-terminal of the GluN2B subunit of the NMDA receptor, fused to the HIV-1 Tat peptide (17). This peptide has shown promising effects against ischemic brain damage in rats (...