The parasympathetic nervous system is important for β-cell secretion and mass
regulation. Here, we characterized involvement of the vagus nerve in pancreatic
β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old
monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg
body weight) or saline [control (CTL) group] during the first 5 days of life. At 30
days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups)
or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats
presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia.
Their pancreatic islets hypersecreted insulin in response to glucose but did not
increase insulin release upon carbachol (Cch) stimulus, despite a higher
intracellular Ca2+ mobilization. Furthermore, while the pancreas weight
was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed.
However, in the MSG pancreas, increases of 51% and 55% were observed in the total
islet and β-cell area/pancreas section, respectively. Also, the β-cell number per
β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy
prevented obesity, reducing 25% of body fat stores and ameliorated glucose
homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin
secretion in response to 11.1 mM glucose and presented normalization of Cch-induced
Ca2+ mobilization and insulin release. All morphometric parameters were
similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in
MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy.
Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic
morphofunction in Mvag rats.