Myocardial infarction (MI) results in irreversible loss of cardiomyocytes (CMs) and can often lead to heart failure. Due to the minimal regeneration capacity of the myocardium, novel therapeutic techniques are needed. Cell therapy has emerged as a promising treatment for MI and involves the introduction of stem cells into the infarct area where they can proliferate and regenerate functional heart tissue. These cells can be delivered by various methods, including direct injection, scaffold formation, and cell sheet preparation. Of these, cell sheet technology appears to hold the most promise as it allows for maximal cell engraftment and retention without significant harmful side effects. Furthermore, the best composition of the cell sheet has since been debated. Cell sheets composed of skeletal myoblasts (SMs), mesenchymal cells (MSCs), and pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have proven to be of the greatest interest for engraftment into infarcted myocardium. Due to their vast differentiation and proliferation potential, pluripotent stem cells show a unique ability to readily regenerate functional myocardium following transplantation. iPSCs express the same pluripotency and induce similar effects in vivo as human ESCs, while circumventing certain sourcing problems and controversies, making them a favorable alternative Identification of an effective combination cell delivery method that allows for prolonged improvement in heart function while decreasing rates of cell death would represent a major advancement in stem cell therapy and the clinical treatment of MI.