Regenerative medicine is emerging as a new approach to the treatment of severe cardiovascular diseases that are resistant to conventional therapies. Although the type of cell transplanted (e.g., pluripotent stem cells, bone marrow-derived stem cells, skeletal myoblasts, or cardiac stem cells) influences the outcome of stem cell transplantation, the method of transplantation is also important, as the efficiency of engraftment after simple needle injection is poor. Scaffold-free cell sheet transplantation technology is one of the most promising methods in this regard. Although the results of clinical trials of stem cell therapy have been marginal to date, further elucidation of the actual mechanisms of cardiac repair following cell therapy would enhance the potential for full-scale implementation of stem cell therapy. In addition to stem cell therapy, the field of cardiovascular regenerative medicine includes interspecific chimera technology, drug delivery systems using biodegradable materials, and gene therapy. Integration of these new modalities with conventional therapies will be important to realize the goal of cardiovascular regenerative medicine tailored to the condition of each individual patient. Cardiovascular surgery would be an excellent means of carrying out this strategy and could potentially resolve the health problems of the increasing number of advanced cardiovascular patients. Herein, we review the recent basic and clinical research associated with the realization of regenerative medicine in the field of cardiovascular surgery.