1985
DOI: 10.1007/bf01157677
|View full text |Cite
|
Sign up to set email alerts
|

Cell-triangular and cell-diagonal factorizations of cell-triangular and cell-diagonal polynomial matrices

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2008
2008
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(3 citation statements)
references
References 3 publications
0
2
0
1
Order By: Relevance
“…Îäèí iç ìåòîäiâ ðîçâ'ÿçóâàííÿ ìàòðè÷íîãî ïîëiíîìiàëüíîãî ðiâíÿííÿ (1) ðóí-òó¹òüñÿ íà çâåäåííi öüîãî ðiâíÿííÿ äî ðiâíîñèëüíîãî ìàòðè÷íîãî ðiâíÿííÿ òàêîãî òèïó ç ìàòðèöÿìè-êîåôiöi¹íòàìè íàä ïîëåì, ïðè öüîìó çàñòîñîâóþòüñÿ ñóïðîâiäíi ìàòðèöi ìàòðè÷íèõ ïîëiíîìiâ [7], [8, ñ. 240], [9].…”
Section: Mathematics Subject Classication: 15a24 11r04unclassified
“…Îäèí iç ìåòîäiâ ðîçâ'ÿçóâàííÿ ìàòðè÷íîãî ïîëiíîìiàëüíîãî ðiâíÿííÿ (1) ðóí-òó¹òüñÿ íà çâåäåííi öüîãî ðiâíÿííÿ äî ðiâíîñèëüíîãî ìàòðè÷íîãî ðiâíÿííÿ òàêîãî òèïó ç ìàòðèöÿìè-êîåôiöi¹íòàìè íàä ïîëåì, ïðè öüîìó çàñòîñîâóþòüñÿ ñóïðîâiäíi ìàòðèöi ìàòðè÷íèõ ïîëiíîìiâ [7], [8, ñ. 240], [9].…”
Section: Mathematics Subject Classication: 15a24 11r04unclassified
“…The conditions of uniqueness of solutions of bounded degree minimal solutions of matrix linear polynomial equations 1.5 were found in [16][17][18][19] . We present the conditions of uniqueness of particular solutions of matrix linear equation over a commutative Bezout domain R. 1.…”
Section: The Uniqueness Of Particular Solutions Of the Matrix Linear mentioning
confidence: 99%
“…Therefore, when we describe the solutions of such equations, it is important to establish their minimal degrees. Some estimations of the degrees of the solutions of the matrix polynomial equation (2) are known in [1,5,9]. In [1], it has been established that if in the matrix polynomial equation (2) both matrices A(λ), B(λ) are regular, then there exists a solution X(λ), Y(λ), such that degX(λ) < degB(λ), degY(λ) < degA(λ)…”
Section: Introductionmentioning
confidence: 99%