Although the camera-type eyes of cephalopods and vertebrates are a canonical example of convergent morphological evolution, the cellular and molecular mechanisms underlying this convergence remain obscure. We used genomics and single cell transcriptomics to study these mechanisms in the visual system of the bobtail squid Euprymna berryi, an emerging cephalopod model. Analysis of 98,537 cellular transcriptomes from the squid visual and nervous system identified dozens of cell types that cannot be placed in simple correspondence with those of vertebrate or fly visual systems, as proposed by Ramón y Cajal and J.Z. Young. Instead, we find an unexpected diversity of neural types, dominated by dopamine, and previously uncharacterized glial cells. Surprisingly, we observe changes in cell populations and neurotransmitter usage during maturation and growth of the visual systems from hatchling to adult. Together these genomic and cellular findings shed new light on the parallel evolution of visual system complexity in cephalopods and vertebrates.