Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
SUMMARYN1‐methyladenosine (m1A) methylation is an essential mechanism of gene regulation known to impact several biological processes in living organisms. However, little is known about the abundance, distribution, and functional significance of mRNA m1A modification during fruit ripening of tomato the main model species for fleshy fruits. Our study shows that m1A modifications are prevalent in tomato mRNA and are detected in lncRNA and circRNA. The distribution of m1A peaks in mRNA segments indicates that m1A is mainly enriched at the start codon and CDS regions. Assessing changes in global RNA methylation during fruit ripening in wild‐type tomatoes and in the ripening‐impaired Nr mutant affected in the ethylene receptor gene (SlETR3) revealed a decrease in the overall methylation levels from mature green (MG) stage to 6 days postbreaker (Br + 6). Nr mutant fruits show significantly lower methylation levels than Ailsa Craig (AC) fruits. Notably, differences in m1A methylation are well correlated to the expression levels of a number of key ripening‐related genes. The integration of RNA‐seq and MeRIP‐seq data suggests a potential positive impact of m1A modifications on gene expression. In comparison to the AC fruits, the hypomethylation and reduced expression of ethylene‐related genes, ACO3, EBF1, and ERF.D6, in the Nr mutants likely underpin the distinct phenotypic traits observed between the two fruit genotypes at the Br6 stage. Overall, our study brings further arguments supporting the potential significance of m1A methylation modifications in fruit ripening, a developmental process that is instrumental to plant reproduction and to fruit sensory and nutritional qualities.
SUMMARYN1‐methyladenosine (m1A) methylation is an essential mechanism of gene regulation known to impact several biological processes in living organisms. However, little is known about the abundance, distribution, and functional significance of mRNA m1A modification during fruit ripening of tomato the main model species for fleshy fruits. Our study shows that m1A modifications are prevalent in tomato mRNA and are detected in lncRNA and circRNA. The distribution of m1A peaks in mRNA segments indicates that m1A is mainly enriched at the start codon and CDS regions. Assessing changes in global RNA methylation during fruit ripening in wild‐type tomatoes and in the ripening‐impaired Nr mutant affected in the ethylene receptor gene (SlETR3) revealed a decrease in the overall methylation levels from mature green (MG) stage to 6 days postbreaker (Br + 6). Nr mutant fruits show significantly lower methylation levels than Ailsa Craig (AC) fruits. Notably, differences in m1A methylation are well correlated to the expression levels of a number of key ripening‐related genes. The integration of RNA‐seq and MeRIP‐seq data suggests a potential positive impact of m1A modifications on gene expression. In comparison to the AC fruits, the hypomethylation and reduced expression of ethylene‐related genes, ACO3, EBF1, and ERF.D6, in the Nr mutants likely underpin the distinct phenotypic traits observed between the two fruit genotypes at the Br6 stage. Overall, our study brings further arguments supporting the potential significance of m1A methylation modifications in fruit ripening, a developmental process that is instrumental to plant reproduction and to fruit sensory and nutritional qualities.
N6-methyladenosine (m6A) is a prevalent and dynamic RNA modification, critical in regulating gene expression. Recent research has shed light on its significance in the life cycle of viruses, especially animal viruses. Depending on the context, these modifications can either enhance or inhibit the replication of viruses. However, research on m6A modifications in animal virus genomes and the impact of viral infection on the host cell m6A landscape has been hindered due to the difficulty of detecting m6A sites at a single-nucleotide level. This article summarises the methods for detecting m6A in RNA. It then discusses the progress of research into m6A modification within animal viruses’ infections, such as influenza A virus, porcine epidemic diarrhoea virus, porcine reproductive, and respiratory syndrome virus. Finally, the review explores how m6A modification affects the following three aspects of the replication of animal RNA viruses: the regulation of viral genomic RNA function, the alteration of the m6A landscape in cells after viral infection, and the modulation of antiviral immunity through m6A modification. Research on m6A modifications in viral RNA sheds light on virus-host interactions at a molecular level. Understanding the impact of m6A on viral replication can help identify new targets for antiviral drug development and may uncover novel regulatory pathways that could potentially enhance antiviral immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.