Cranial neural crest (NC) cells migrate long distances to populate the future craniofacial regions and give rise to various tissues, including facial cartilage, bones, connective tissues, and cranial nerves. However, the mechanism that drives the fate determination of cranial NC cells remains unclear. Using single-cell RNA sequencing combined genetic fate mapping, we reconstructed developmental trajectories of cranial NC cells, and traced their differentiation in mouse embryos. We identified four major cranial NC cell lineages at different status: pre-epithelial-mesenchymal transition, early migration, NC-derived mesenchymal cells, and neural lineage cells from embryonic days 9.5 to 12.5. During migration, the first cell fate determination separates cranial sensory ganglia, the second generates mesenchymal progenitors, and the third separates other neural lineage cells. We then focused on the early facial prominences that appear to be built by undifferentiated, fast-dividing NC cells that possess similar transcriptomic landscapes, which could be the drive for the facial developmental robustness. The post-migratory cranial NC cells exit the cell cycle around embryonic day 11.5 after facial shaping is completed and initiates further fate determination and differentiation processes. Our results demonstrate the transcriptomic landscapes during dynamic cell fate determination and cell cycle progression of cranial NC lineage cells and also suggest that the transcriptomic regulation of the balance between proliferation and differentiation of the post-migratory cranial NC cells can be a key for building up unique facial structures in vertebrates.