One of the promising raw materials for the synthesis of geopolymers is perlite, which is a natural low-calcium aluminosilicate. This research studied the physical, mechanical and microstructural characteristics of perlite-based geopolymers modified with different mineral additives that were prepared using different methods of introducing the alkali components and curing conditions. The experimental results of the consolidated perlite-based geopolymer pastes showed that curing conditions and the method of introducing the alkali component into the geopolymer matrix had a minimal effect on the average density while demonstrating a significant boost in compressive strength. So, after thermal treatment, the compressive strength increased by 0.63 to 11.4 times for the mixes when fresh alkali solution was used and by 0.72 to 12.8 times for the mixes with the 24 h conditioned alkali solution. Maximum-strength spikes from 1.1 MPa to 13.2 MPa and from 0.7 MPa to 9.7 MPa were observed for the mixes with kaolin when prepared with fresh and conditioned alkali solutions, respectively. It was also observed that thermal treatment facilitates the compaction of the matrix structure by 18% and 1% for the non-modified mix and the mix modified with Portland cement. Perlite-based geopolymers modified with Portland cement and citrogypsum demonstrated a significant reduction in the initial and final setting times with both methods of introducing the alkali solution. On the surface of mixes modified with citrogypsum, regardless of the curing conditions and method of introducing the alkali component, an efflorescence substance was observed. The microstructural analysis of the consolidated geopolymer perlite-based pastes containing citrogypsum demonstrated a loose structure and the presence of efflorescence, which can be associated with a retardation in interaction processes between alkali cations and the aluminosilicate component. EDS analysis demonstrated that the presence of such elements as oxygen, sodium and sulfur may indicate the efflorescence of unreacted sodium hydroxide (NaOH), citrogypsum (CaSO4) and the products of their interaction in the form of crystalline hydrates of sodium sulfate (Na2SO4).