The mouse acyl-CoA-binding protein (ACBP) 5 /diazepam binding inhibitor is a 10-kDa intracellular protein consisting of 86 amino acids. It is highly conserved throughout evolution and expressed in all cell types in the eukaryotes investigated (1, 2). This, together with the characteristics of the ACBP promoter (3, 4), implies a housekeeping function of the gene. However, expression levels vary markedly between tissues (5) and in response to different metabolic stimuli (6 -9), thereby indicating that ACBP might perform more specialized functions in some cell types. The ACBP protein binds C 14 -C 22 acyl-CoA esters with high affinity and specificity (10, 11) and has very little or no affinity toward other ligands (11-13). From in vitro studies, ACBP is known to protect acyl-CoA esters from hydrolysis (14 -16) and to relieve acyl-CoA inhibition of a number of enzymes, including long chain acyl-CoA synthetase, acetyl-CoA carboxylase (ACC), adenine nucleotide translocase, fatty acid synthetase (FAS), carnitine palmitoyltransferase, and acyl-CoA:cholesterol acyltransferase (9, 16 -18). In addition, ACBP is known to donate acyl-CoA esters to phospholipid, glycerolipid, and cholesteryl ester (CE) synthesis (14, 18 -21). Finally, proteolytic products of secreted ACBP have been shown to have signaling functions in Dictyostelium as well as mammalian cells (22). Targeted disruption of the yeast ACBP gene (ACB1) revealed that ACBP deficiency results in increased levels of C18:0 acyl-CoA esters and a decrease in the amount of total C26:0 fatty acids, indicating that transport of FA toward elongation is impaired by lack of ACBP. Furthermore, sphingolipid and ceramide amounts were reduced, membrane structure was altered, and vesicular transport was compromised (23-25).The functions of ACBP in lipid metabolism have been further studied in different mammalian cell culture systems and animal models by both knockdown strategies and overexpression of the protein. It has been reported that knockdown of ACBP by small interfering RNA causes growth arrest and lethality in three different mammalian cell lines (26); however, data from our laboratory show that ACBP can be knocked down in many different cell systems without affecting growth and survival (27). 6 Recently, knockdown of ACBP in HepG2 cells was shown to suppress the expression of a number of genes involved in lipid biosynthesis and lead to decreased levels of saturated and monounsaturated fatty acids (28). In 3T3-L1 preadipocytes, knockdown of ACBP caused a mild impairment of adipocyte differentiation and accumulation of triacylglycerol (TAG) (27), whereas overexpression of ACBP in McA-RH7777 rat hepatoma cells resulted in increased intracellular TAG accumulation (29). Overexpression of ACBP in transgenic mice resulted in accumulation of different lipid classes, including TAG in the liver (30). These results suggest *