2021
DOI: 10.21203/rs.3.rs-1120182/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Cellular Genome-scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma

Abstract: Hepatocellular carcinoma is the third leading cause of cancer related mortality worldwide. Often this hepatic cancer is associated with fatty liver disease and insulin resistance with genetic predisposition are its major driver. Genome-scale metabolic modeling (GEM) is a promising approach to understand cancer metabolism and to identify new drug targets. Here, we used TRFBA-CORE, an algorithm generating a model using key growth-correlated reactions. Specifically, we generated a HepG2 cell-specific GEM by integ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?