Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1 2 /2 ) consuming a high salt diet (4% NaCl) received N v -nitro-L-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) 6 MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME 1 AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME1AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME1AngII treated WT mice, but not cav-1 2/2 mice.AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME 1 AngII treated WT and cav-1 2/2 mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME 1 AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1 2/2 mice was greater than in WT mice, not modified by L-NAME 1 AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a) quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1 2/2 versus WT mice, further increased with L-NAME 1 AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME 1 AngII in WT mice but not in cav-1 2/2 mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME 1 AngII treated WT and cav-1 2/2 mice and did not change with EPL. Thus, during L-NAME 1 AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP-mediated relaxation during low NO-high AngII-dependent cardiovascular injury.