The crosstalk between tumor progression and ferroptosis is largely unknown. Here, we identify malate dehydrogenase 2 (MDH2) as a key regulator of ferroptosis. MDH2 deficiency inhibits hepatocellular carcinoma (HCC) cell growth and promotes sensitivity of HCC cells to RSL3-induced ferroptosis. MDH2 knockdown enhances RSL3-induced intracellular reactive oxygen species (ROS), free iron ions and lipid peroxides levels, leading to HCC ferroptotic cell death which is rescued by Ferrostatin-1 and iron chelator Deferiprone. Importantly, inhibition of HCC cell growth caused by MDH2 deficiency is partially rescued by ferroptosis blockade. Mechanistically, MDH2 resists RSL3-induced ferroptosis sensitivity by dependence on GPX4, which is stabilized by MDH2 in HCC. The protein expression of MDH2 and GPX4 is positively correlated with each other in HCC cell lines. Furthermore, through UALCAN website analysis, we find that MDH2 and GPX4 are highly expressed in HCC samples. These findings reveal a critical mechanism by which HCC evades ferroptosis via MDH2-mediated stabilization of GPX4 to promote tumor progression and underscore the potential of MDH2 inhibition in combination with ferroptosis inducers for the treatment of HCC.