Acute myeloid leukemia (AML) is an aggressive hematological malignancy often curable only by using intensive chemotherapy. Nonetheless, resistance/early relapses are frequent, underscoring the need to investigate the molecular events occurring shortly after chemotherapy. Therapy-induced senescence (TIS) is a fail-safe tumor suppressive mechanism that may elicit immune-mediated responses contributing to senescent cell clearance. Yet, TIS functional role in AML eradication and immune surveillance early post-chemotherapy remains ill-defined. By combining transcriptional and cellular-based evaluation of senescence markers in AML patient samples, we found upregulation of senescence-associated genes and interferon gene categories with concomitant induction of HLA class I and class II molecules, pointing to a causal link between TIS and leukemia immunogenicity. Consistently, senescence-competent AML samples activated autologous CD4+ and CD8+ T cells and improved leukemia recognition by both T-cell subsets. Lastly, the anti-leukemic activity of Immune Checkpoint Blockades (ICBs) was enhanced upon senescence engagement in AML. Altogether, our results identify senescence as a potent immune-related anti-leukemic mechanism that may rapidly translate into innovative senescence-based strategies to prevent AML relapse.