Accumulations of higher inositol polyphosphates, diphosphoinositol polyphosphates or pyrophosphates, have been implicated to mediate cellular apoptosis. Whether cellular levels of lower inositol phosphates (lower than inositol hexakisphosphates) change during apoptosis is not known, although these inositol phosphates are known to play crucial roles in a number of cellular signaling processes including calcium mobilization. Therefore, in this study, we have examined changes in cellular levels of inositol phosphates following metabolic labeling of these compounds by [(3)H]myo-inositol and induction of apoptosis. The levels of inositol mono- and bis-phosphates were increased, whereas the levels of inositol tris- and tetrakis-phosphates decreased significantly with an increasing rate of apoptosis induced by etoposide in a dose-dependent manner. NaF treatment, which increased the rate of apoptosis in a time- and dose-dependent manner, also increased the levels of inositol mono- and bis-phosphates and drastically reduced the levels of inositol tris- and tetrakis-phosphates. Prior treatment with antimycin A, a strategy used to reverse the NaF-induced accumulations of higher InsPs, partially reduced the effects of NaF on apoptosis as well as the levels of lower InsPs. Taken together, our results suggest that cellular levels of lower InsPs are altered during apoptosis.