In this study, a polymeric (acrylonitrile-co-styrene) P(AN-co-St) composite was impregnated with adsorbents, such as sulfonated and multiwall carbon nanotubes (MWCNTs), to increase the adsorptive characteristics of the nanocomposite upon the removal of methyl orange (MO) dye under different conditions. A novel nanocomposite copolymer mixture of P(AN-co-St) and SP(AN-co-St) was used. MWCNTs were prepared by a low-cost chemical vapor deposition (CVD) process. Variation in MO adsorption onto the three nanocomposites was examined in an aqueous solution via the batch technique with respect to contact time, initial MO concentration, adsorbent dosage, pH, and temperature. The surface of the nanocomposites was characterized by a scanning electron microscope (SEM), particle size distribution (PSD), Fourier transform infrared (FTIR), and Raman analysis. The experimental data showed that the efficiency of P(AN-co-St)/ MWCNT removal increased under the conditions of an acidic pH (3 and 5) with an agitation speed of 140 rpm, a sorbent weight of 0.01 g, and 20 mg of initial dye. The maximum sorption capacities were 121.95, 48.78, and 47.84 mg g−1 for the P(AN-co-St)/ MWCNTs, SP(AN-co-St), and P(AN-co-St) composites, respectively, as assessed by the Langmuir model. Additional isotherm models, such as the Freundlich, Temkin, and Halsey models, were used to examine the experimental data. A pseudo-second-order model was found to be more fitting for describing the sorption.