<p>One of the challenges of robotics is to develop a robot control system capable of obtaining intelligent, suitable responses to dynamic environments. The basic requirements for accomplishing this is a robot control architecture and a hardware platform that can adapt the software and hardware to the current state of the environment. This has led researchers to design control architectures composed of distributed, independent and asynchronous behaviours. In line with this research, this thesis details the development of a control system which adopts a hierarchical hybrid navigation architecture designed at Victoria University of Wellington. The implementation of the control system is aimed towards one of Victoria University of Wellington’s fleet of mobile robotic platforms called MARVIN. MARVIN is a differential drive robot and the sensory equipment on the device includes infrared sensors and odometry. The control system has been implemented in C# .NET programming language adopting a Service- Oriented Architecture. This software framework provides several services along with a graphical user interface to configure the control system. Several experiments have been carried out to test the control system and the results indicate that the features of the navigation architecture have been accomplished</p>