2021
DOI: 10.48550/arxiv.2110.00224
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Censored autoregressive regression models with Student-$t$ innovations

Abstract: This paper proposes an algorithm to estimate the parameters of a censored linear regression model when the regression errors are autocorrelated, and the innovations follow a Student-t distribution. The Student-t distribution is widely used in statistical modeling of datasets involving errors with outliers and a more substantial possibility of extreme values. The maximum likelihood (ML) estimates are obtained throughout the SAEM algorithm [1]. This algorithm is a stochastic approximation of the EM algorithm, an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?