Random survival forests and survival trees are popular models in statistics and machine learning. However, there is a lack of general understanding regarding consistency, splitting rules and influence of the censoring mechanism. In this paper, we investigate the statistical properties of existing methods from several interesting perspectives. First, we show that traditional splitting rules with censored outcomes rely on a biased estimation of the within-node failure distribution. To exactly quantify this bias, we develop a concentration bound of the within-node estimation based on non i.i.d. samples and apply it to the entire forest. Second, we analyze the entanglement between the failure and censoring distributions caused by univariate splits, and show that without correcting the bias at an internal node, survival tree and forest models can still enjoy consistency under suitable conditions. In particular, we demonstrate this property under two cases: a finite-dimensional case where the splitting variables and cutting points