The wnt gene family encodes a set of secreted glycoproteins involved in key developmental processes, including cell fate specification and regulation of posterior growth (Cadigan KM, Nusse R. 1997 . To obtain a more comprehensive scenario of the evolutionary dynamics of this gene family, we exhaustively mined wnt gene sequences from the whole genome assemblies of a mollusk (Lottia gigantea) and two annelids (Capitella teleta and Helobdella robusta) and examined them by phylogenetic, genetic linkage, intron-exon structure, and embryonic expression analyses. The 36 wnt genes obtained represent 11, 12, and 9 distinct wnt subfamilies in Lottia, Capitella, and Helobdella, respectively. Thus, two of the three analyzed lophotrochozoan genomes retained an almost complete ancestral complement of wnt genes emphasizing the importance and complexity of this gene family across metazoans. The genome of the leech Helobdella reflects significantly more dynamism than those of Lottia and Capitella, as judged by gene duplications and losses, branch length, and changes in genetic linkage. Finally, we performed a detailed expression analysis for all the Helobdella wnt genes during embryonic development. We find that, although the patterns show substantial overlap during early cleavage stages, each wnt gene has a unique expression pattern in the germinal plate and during tissue morphogenesis. Comparisons of the embryonic expression patterns of the duplicated wnt genes in Helobdella with their orthologs in Capitella reveal extensive regulatory diversification of the duplicated leech wnt genes.