Peatlands records can be used to reconstruct and understand the history of environmental evolution, as well as a more accurate reflection of human activities. The black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are ideal natural archives of anthropogenic activities. To identify the information of anthropogenic activities recorded by peatlands in the middle and high latitudes of the alpine mountains in the arid and semi-arid regions of China. this study analyzed the concentrations of BC, δ13C ratios of BC, PAHs, and molecular diagnostic ratios of PHAs (including Benzo(a) anthracene (BaA), Chrysene (Chr), fluoranthene (Flt), anthracene (Ant), phenanthrene (Phe), Benzo(a) pyrene (BaP), and pyrene (Pyr) in a 30-cm peat profile from the Altay Mountain, northwestern China. Our results revealed concentrations of BC from 11.71 to 67.5 mg·g−1, and PAHs from 168.09 to 263.53 ng·g−1. The δ13CBC value ranged from − 31.37 to − 26.27‰, with an average of − 29.54‰, indicating that the BC mainly comes from biomass combustion. The ratios of BaA/(BaA + Chr), Flt/(Flt + Pyr), and Ant/(Ant + Phe) exceeded 0.35, 0.5, and 0.1, respectively, revealing that the PAHs pollutants mainly originated from the combustion of biomass and fossil fuel burning. Furthermore, based on these findings and our knowledge of social development in Altay, industrial transport and tourism have influenced the emission, transport, and deposition of BC and PAH in peatlands in the Altay mountains since the 1980s. After 1980, pollutant concentrations decreased with the implementation of environmental policies. The results not only reveal the influence of anthropogenic activities on the sedimentary characteristics of peatlands in the Altay Mountains, but also provide an important theoretical basis for the conservation of fragile mountain peatlands.