Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion‐weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal‐to‐noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.