Background: The aim of the study is to determine the anticancer activity of
Thymus algeriensis
(TS) and its underlying mechanisms using
in vitro
and in animal models.
Methods: HCT116 cells were treated with TS essential oil alone or with TRAIL, and then its anticancer effect was determined by using MTT assay, live dead assay, caspase activation and PARP cleavage. Further mechanisms of its anticancer effects was determined by analyzing expression of death receptor signaling pathway using Western blotting. A mouse model was also used to assess the antitumor potential of thyme essential oil.
Results: TS oily fraction showed tumor growth inhibitory effect even at lower concentration. TS induces apoptotic cell death as indicated by cleavage of PARP, and activation of the initiator and effector caspases (caspase-3, -8 and -9). Further, results showed that TS increases the expression of death receptors (DRs) and reduces the expression of TRAIL decoy receptors (DcRs). In addition, upregulation of signaling molecules of MAPK pathway (p38 kinase, ERK, JNK), down-regulation of c-FLIP, and overexpression of SP1 and CHOP were observed by TS. Further in animal model, intragastric administration of TS (12.5 mg/ml and 50 mg/ml) prevented colorectal carcinogenesis by blocking multi-steps in carcinoma.
Conclusion: Overall, these results indicate that thymus essential oil promotes apoptosis in HCT116 cells and impedes tumorigenesis in animal model. Moreover, thyme potentiates TRAIL-induced cell death through upregulation of DRs, CHOP and SP1 as well as downregulation of antiapoptotic proteins in HCT116 cells. However, therapeutic potential of TS needs to be further explored.