“…The mTOR molecule, a highly conserved nutrient sensor, modulates INS metabolic signaling through its phosphorylation [(P)] of S6K1, an evolutionarily conserved serine (Ser) kinase [16,17,18,19,20,21]. Evidence is mounting that chronic activation of S6K1, by excessive nutrients, promotes INS resistance in fat, liver, heart, skeletal muscle, and renal tissue through increased Ser(P) of the critical INS signaling/docking molecule, INS receptor substrate protein-1 (IRS-1), leading to impaired phosphoinositol 3-kinase (PI3-K) engagement and protein kinase B (Akt) stimulation [21,22,23]. Our recent work indicates that S6K1 is activated in CV tissue of an overnutrition rodent model that exhibits diminished INS metabolic signaling and biological consequences, such as impaired nitric oxide (NO)-mediated vascular relaxation, cardiac diastolic dysfunction, and promotion of kidney tubulointerstitial fibrosis.…”