2019
DOI: 10.1016/j.jmva.2018.09.014
|View full text |Cite
|
Sign up to set email alerts
|

Central limit theorem and bootstrap procedure for Wasserstein’s variations with an application to structural relationships between distributions

Abstract: Wasserstein barycenters and variance-like criteria based on the Wasserstein distance are used in many problems to analyze the homogeneity of collections of distributions and structural relationships between the observations. We propose the estimation of the quantiles of the empirical process of Wasserstein's variation using a bootstrap procedure. We then use these results for statistical inference on a distribution registration model for general deformation functions.The tests are based on the variance of the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
14
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(16 citation statements)
references
References 28 publications
2
14
0
Order By: Relevance
“…The paper Kroshnin (2018) obtains an analog of law of large numbers for the case of arbitrary cost functions for barycenters on some affine sub-space A (1.3). A result, similar in spirit to Theorem 2.5 is obtained in Del Barrio et al (2016). However, there authors consider only the space of probability measures supported on the real line (i.e.…”
Section: Connection To Other Problemssupporting
confidence: 53%
“…The paper Kroshnin (2018) obtains an analog of law of large numbers for the case of arbitrary cost functions for barycenters on some affine sub-space A (1.3). A result, similar in spirit to Theorem 2.5 is obtained in Del Barrio et al (2016). However, there authors consider only the space of probability measures supported on the real line (i.e.…”
Section: Connection To Other Problemssupporting
confidence: 53%
“…Techniques based on optimal transport for data science have thus recently received an increasing interest in mathematical and computational statistics [8,[10][11][12][13][14][15]28,29,44,45,47,49,51,54,58,62,66,67], machine learning [4,6,22,23,32,[36][37][38]40,55,57], image processing and computer vision [7,17,24,30,31,41,52,59,60] or computational biology [56].…”
Section: The Emerging Field Of Statistical Optimal Transportmentioning
confidence: 99%
“…A goodness-of-fit test is a fundamental and important method to evaluate the uncertainty of observed distributions rigorously, and it is largely studied with various distances such as the Kullback-Leibler divergence [18,34,30,17]. However, statistical inference with the Wasserstein distance is available only for univariate data [20,9,24,3,11] or discrete-valued data [29,31,4]. For general multivariate data, a strong assumption, such as Gaussianity of data, are required to develop inference methods [25,11].…”
Section: Introductionmentioning
confidence: 99%
“…However, statistical inference with the Wasserstein distance is available only for univariate data [20,9,24,3,11] or discrete-valued data [29,31,4]. For general multivariate data, a strong assumption, such as Gaussianity of data, are required to develop inference methods [25,11]. The difficulty of statistical inference comes from an obscure limit distribution of the Wasserstein distance, and addressing the difficulty has been an important open question (Described in Section 3 of a review paper [23]).…”
Section: Introductionmentioning
confidence: 99%