SummaryThe success of immune system‐based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti‐CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma‐specific protein, gp100, presented by HLA‐A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro‐inflammatory cytokines (tumour necrosis factor‐α, interferon‐γ, interleukin‐6) and chemokines (macrophage inflammatory protein‐1α‐β, interferon‐γ‐inducible protein‐10, monocyte chemoattractant protein‐1). At an individual cell level, IMCgp100‐redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti‐cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell‐mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.