Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The glossopharyngeal nerve is a complicated and mixed nerve including sensory, motor, parasympathetic, and visceral fibers. It mediates taste, salivation, and swallowing. The low cranial nerves, including IXth, Xth, and XIth, are closely related, sharing some nuclei in the brainstem. The glossopharyngeal nerve arises from the spinal trigeminal nucleus and tract, solitary tract and nucleus, nucleus ambiguous, and inferior salivatory nucleus in the brainstem. There are communicating branches forming a neural anastomotic network between low cranial nerves. Comprehensive knowledge of the anatomy of the glossopharyngeal nerve is crucial for performing surgical procedures without significant complications. This review describes the microsurgical anatomy of the glossopharyngeal nerve and illustrates some pictures involving the glossopharyngeal nerve and its connective and neurovascular structures.
The glossopharyngeal nerve is a complicated and mixed nerve including sensory, motor, parasympathetic, and visceral fibers. It mediates taste, salivation, and swallowing. The low cranial nerves, including IXth, Xth, and XIth, are closely related, sharing some nuclei in the brainstem. The glossopharyngeal nerve arises from the spinal trigeminal nucleus and tract, solitary tract and nucleus, nucleus ambiguous, and inferior salivatory nucleus in the brainstem. There are communicating branches forming a neural anastomotic network between low cranial nerves. Comprehensive knowledge of the anatomy of the glossopharyngeal nerve is crucial for performing surgical procedures without significant complications. This review describes the microsurgical anatomy of the glossopharyngeal nerve and illustrates some pictures involving the glossopharyngeal nerve and its connective and neurovascular structures.
The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the peripheral nervous system (PNS) are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases (progressive supranuclear palsy: PSP, n = 15; Alzheimer’s disease: AD, n = 18; chronic traumatic encephalopathy: CTE, n = 5; and corticobasal degeneration: CBD, n = 6; Pick’s disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy, LNT, n = 1) using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88 %), IX/X: 10/11 (91 %), XII: 6/6 (100 %); anterior spinal roots: 10/10 (100 %). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE, and Pick’s disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.