It has been recently reported that phenylmethanesulfonyl fluoride (PMSF) when given to hens after a neuropathic organophosphate (OP) promotes organophosphate-induced delayed polyneuropathy (OPIDP). Chicks are resistant to OPIDP despite high inhibition/aging of neuropathy target esterase (NTE), the putative target of OPIDP initiation. However, when PMSF (300 mg/kg s.c.) is given to chicks after di-butyl 2,2-dichlorovinyl phosphate (DBDCVP, 1 or 5 mg/kg s.c.), OPIDP is promoted. Inhibition/aging of at least 30% of NTE was thought to be an essential prerequisite for promotion to be elicited in adult hens. However, we observed in hens that when NTE is maximally affected (greater than 90%) by phenyl N-methyl N-benzyl carbamate (40 mg/kg i.v.), a non-ageable inhibitor of NTE, and then PMSF is given (120 mg/kg/day s.c. x 3 days) clinical signs of neuropathy become evident. Methamidophos (50 mg/kg p.o. to hens), which produces in vivo a reactivatable form of inhibited NTE, was shown either to protect from or promote OPIDP caused by DBDCVP (0.45 mg/kg s.c.), depending on the sequence of dosing. Because very high doses of methamidophos cause OPIDP, we considered this effect to be a "self-promoted" OPIDP. We concluded that NTE inhibitors might have different intrinsic activities for producing OPIDP once NTE is affected. Aging might differentiate highly neuropathic OPs, like DBDCVP, from less neuropathic OPs, like methamidophos, or from the least neuropathic carbamates, which require promotion in order for neuropathy to be expressed.(ABSTRACT TRUNCATED AT 250 WORDS)