Exposure to complex mixtures of air pollutants produces in ammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemica l expression of nuclear factor-kappa beta (NF-j B) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-j B and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequen t damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neuro brillary tangles. Persistent pulmonary in ammation and deteriorating olfactory and respiratory barriers may play a role in the neuropatholog y observed in the brains of these highly exposed canines. Neurodegenerativ e disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.