During operation, a buried pipeline is threatened by a variety of geological hazards, particularly in permafrost regions, where freezing-thawing disasters have a significant influence on the integrity and safety of the buried pipelines. The topographical environmental conditions along the pipeline, as well as the influence of frost heave and thaw settlement on the pipeline’s foundation soil, must be considered in the design and construction stage. Theoretical analysis, numerical modeling, field testing, and mitigation measures on vital energy pipelines in permafrost have been widely documented, but no attempt has been made to review the freezing-thawing disasters, current research methodologies, and mitigation strategies. This article reviews the formation mechanisms and mitigation measures for frost hazards (e.g., differential frost heave, thaw settlement, slope instability, frost mounds, icing, river ice scouring, and pipeline floating) along buried pipelines in permafrost regions and summarizes and prospects the major progress in the research on mechanisms, analysis methods, model test, and field monitoring based on publications of studies of key energy pipelines in permafrost regions. This review will provide scholars with a basic understanding of the challenging freezing-thawing hazards encountered by energy pipelines in permafrost regions, as well as research on the stability and mitigation of pipeline foundation soils plagued by freezing-thawing hazards in permafrost regions under a warming climate and degrading permafrost environment.