Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Heavy rainfall is the main factor inducing the failure of loess slopes. However, the failure mechanism and mode of terraced loess slopes under heavy rainfall have not been well investigated and understood. This paper presents the experimental study on the deformation and failure of terraced loess slopes with different gradients under extreme rainfall conditions. The deformation and failure processes of the slope and the migration of the wetting front within the slope during rainfall were captured by the digital cameras installed on the top and side of the test box. In addition, the mechanical and hydrological responses of the slope, including earth pressure, water content, pore water pressure, and matric suction, were monitored and analyzed under rainfall infiltration and erosion. The experimental study shows that the deformation and failure of terraced loess slopes under heavy rainfall conditions exhibit the characteristic of progressive erosion damage. In general, the steeper the slope, the more severe the deformation and failure, and the shorter the time required for erosion failure. The data obtained from sensors embedded in the slope can reflect the mechanical and hydraulic characteristics of the slope in response to rainfall. The earth pressure and pore water pressure in the slope exhibit a fluctuating pattern with continued rainfall. The failure mode of terraced loess slopes under extreme rainfall can be summarized into five stages: erosion of slope surface and formation of small gullies and cracks, expansion of gullies and cracks along the slope surface, widening and deepening of gullies, local collapse and flow-slip of the slope, and large-scale collapse of the slope. The findings can provide preliminary data references for researchers to better understand the failure characteristics of terraced loess slopes under extreme rainfall and to further validate the results of numerical simulations and analytical solutions.
Heavy rainfall is the main factor inducing the failure of loess slopes. However, the failure mechanism and mode of terraced loess slopes under heavy rainfall have not been well investigated and understood. This paper presents the experimental study on the deformation and failure of terraced loess slopes with different gradients under extreme rainfall conditions. The deformation and failure processes of the slope and the migration of the wetting front within the slope during rainfall were captured by the digital cameras installed on the top and side of the test box. In addition, the mechanical and hydrological responses of the slope, including earth pressure, water content, pore water pressure, and matric suction, were monitored and analyzed under rainfall infiltration and erosion. The experimental study shows that the deformation and failure of terraced loess slopes under heavy rainfall conditions exhibit the characteristic of progressive erosion damage. In general, the steeper the slope, the more severe the deformation and failure, and the shorter the time required for erosion failure. The data obtained from sensors embedded in the slope can reflect the mechanical and hydraulic characteristics of the slope in response to rainfall. The earth pressure and pore water pressure in the slope exhibit a fluctuating pattern with continued rainfall. The failure mode of terraced loess slopes under extreme rainfall can be summarized into five stages: erosion of slope surface and formation of small gullies and cracks, expansion of gullies and cracks along the slope surface, widening and deepening of gullies, local collapse and flow-slip of the slope, and large-scale collapse of the slope. The findings can provide preliminary data references for researchers to better understand the failure characteristics of terraced loess slopes under extreme rainfall and to further validate the results of numerical simulations and analytical solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.