Abstract.Oocytes, including those from mammals, lack centrioles, but neither the mechanism by which mature eggs lose their centrioles nor the exact stage at which centrioles are destroyed during oogenesis is known. To answer questions raised by centriole disappearance during oogenesis, using a transgenic mouse expressing GFP-centrin-2 (GFP CETN2), we traced their presence from e11.5 primordial germ cells (PGCs) through oogenesis and their ultimate dissolution in mature oocytes. We show tightly coupled CETN2 doublets in PGCs, oogonia, and pre-pubertal oocytes. Beginning with follicular recruitment of incompetent germinal vesicle (GV) oocytes, through full oocyte maturation, the CETN2 doublets separate within the pericentriolar material (PCM); concomitantly, a rise in single CETN2 pairs is identified. CETN2 dissolution accelerates following meiosis resumption. Remarkably, a single CETN2 pair is retained in the PCM of most meiotic metaphase-I and -II spindle poles. Partial dissolution of the CETN2 foci occurs even as other centriole markers, like Cep135, a protein necessary for centriole duplication, are maintained at the PCM. Furthermore, live imaging demonstrates that the link between the two centrioles breaks as meiosis resumes and that centriole association with the PCM is progressively lost.Microtubule inhibition shows that centriole dissolution is uncoupled from microtubule dynamics. Thus, centriole doublets, present in early G2-arrested meiotic prophase oocytes, begin partial reduction during follicular recruitment and meiotic resumption, much later than previously thought.All rights reserved. No reuse allowed without permission.was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.